Tag Archive | Yale

Planet Hunters Introduction


Hi, I’m Meg Schwamb a postdoctoral fellow at Yale University and member of the Planet Hunters Team. Welcome to Planet Hunters! We’ve been working hard, and we are excited to finally show you the finished product!

In the last decade, we have seen an explosion in the number of known planets orbiting stars beyond our own solar system. With ground based transit searches, stellar radial-velocity observations, and microlensing detections, over 500 extrasolar planets (exoplanets) have been discovered to date. Studying the physical and dynamical properties of each of these new worlds has revolutionized our understanding of planetary formation and the evolution of planetary systems. But we have just barely scratched the surface in understanding the diversity of planetary systems and planet formation pathways.The current inventory of known exoplanets has been limited to mostly Jupiter-sized or larger gas-rich planets, most orbiting extremely close to their parent stars. The current inventory of known exoplanets has been limited to mostly Jupiter-sized or larger gas-rich planets, most orbiting extremely close to their parent stars. While these planets have provided great insight into the formation of giant planets, beyond Mercury, Venus, Earth, and Mars, in our own solar system, little is known about the formation and prevalence of rocky terrestrial planets in the universe.

Finding Earth-size planets is a difficult task because the transit-signals, the dimming of the star’s light caused be a planet moving in front of the star, are so shallow. For a Jupiter-size planet, the transit depth is ~1% of the star’s brightness. For an Earth-size planet transiting a Sun-like star the decrease in brightness is less than .001%. Ground-based surveys have not reached the sensitivity to detect such planets around stars similar to our Sun, but with NASA’s space-based Kepler mission, launched in March 2009, astronomers are primed to start a new era in the study of exoplanets. Even with the exceptional data from the Kepler telescope, finding these Earth-sized planets will be extremely difficult, but in the age of Kepler, the first rocky planets will likely be detected including the potential to find Earth-like planets residing in the habitable zone, warm enough to harbor liquid water and potentially life on their surfaces.

NASA’s Kepler spacecraft is one of the most powerful tools in the hunt for extrasolar planets. The Kepler data set is unprecedented, both in observing cadence and in the photometric precision. Before Kepler, the only star monitored this precisely was our own Sun. The lightcurves reveal subtle variability that has never before been documented. The Kepler data set is a unique reservoir waiting to be tapped. Kepler lightcurves are now publicly available with the first data release this past June and the next release scheduled for February 2011.

The Kepler Team computers are sifting through the data, but we at Planet Hunters are betting that there will be transit signals which can only be found via the remarkable human ability for pattern recognition. Computers are only good at finding what they’ve been taught to look for. Whereas the human brain has the uncanny ability to recognize patterns and immediately pick out what is strange or unique, far beyond what we can teach machines to do. With Planet Hunters we are looking for the needle in the haystack, and ask you to help us search for planets.

This is a gamble, a bet, if you will, on the ability of humans to beat machines just occasionally. It may be that no new planets are found or that computers have the job down to a fine art. That’s ok. For science to progress sometimes we have to do experiments, and although it may not seem like it at the time negative results are as valuable as positive ones. Most of the lightcurves will be flat devoid of transit signals but yet, it’s just possible that you might be the first to know that a star somewhere out there in the Milky Way has a companion, just as our Sun does.

Fancy giving it a try?