Tag Archive | NASA

Hot Friends of Hot Jupiters: The WASP-47 system

Ever since a mechanical failure caused the end of the original Kepler mission in 2013, the Kepler spacecraft has been conducting a survey of new stars, searching for planets across the ecliptic plane in its new K2 mission (https://blog.planethunters.org/2014/12/12/more-about-the-k2-campaign-0/). The K2 dataset is a goldmine of fascinating science results. One such result is the recent discovery of two new planets in the WASP-47 system.

Until a few months ago, everyone knew that hot Jupiter planets don’t have “friends”, or nearby small planets in close orbits to the host star. These other planets had been searched for extensively, through radial velocity measurements, analysis of the transit times of the hot Jupiters, and even through transits by Kepler during its original mission. All of these searches turned up nothing.

This all changed one day last July, when Hans Martin Schwengeler, a Planet Hunter who enjoys poring over Kepler and K2 data searching for new transiting planets by eye, came across the telltale signatures of two extra transiting planets in the hot Jupiter system WASP-47. WASP 47b was, by all indications, a perfectly normal hot Jupiter — in the discovery paper, Coel Hellier wrote “With an orbital period of 4.16 days, a mass of 1.14 Jupiter masses, and a radius of 1.15 Jupiter radii, WASP-47b is an entirely typical hot Jupiter”. The discovery of additional transiting planets dramatically changed the narrative.

When Hans came across the planets, he posted them to the Planet Hunters forum, where he and other citizen scientists discuss their findings. Andrew Vanderburg came across the post suggesting that a known hot Jupiter had planetary companions. Using his K2 data reduction pipeline (https://blog.planethunters.org/2015/01/08/a-recipe-for-making-a-k2-light-curve/), he analyzed the light curve and confirmed Hans’s discovery – there were additional planets in the system, a super-Earth at a 0.8 day period and a Neptune at a 9 day period!

Andrew emailed me, and at first I hardly believed that the lightcurve was real. How could a hot Jupiter have close-in planetary companions? I knew people had been looking for this type of companion for years via both photometry and transit timing variations, but the lack of discoveries indicated that they might not exist. I performed some numerical stability simulations (because it seemed at first like this system could not be dynamically stable!) and sure enough, the N-body simulations showed that the system was likely stable on timescales of 10 million years.

At that point, we formed a team with Hans, Andrew, MIT Professor Saul Rappaport, University of Michigan Professor Fred Adams (my advisor!), and me. Once this team was formed, we devoted ourselves to understanding as much about the systems as we could. Some work by Saul and Andrew confirmed that the planets were all orbiting the same star, Andrew fit the lightcurve to get the planet properties, and I ran more stability simulations. Soon enough, Fred suggested that I look at what transit timing variations (or TTVs, which happen when transits come late or early because of the gravity of other planets in the system) we would theoretically expect to see from the system – and I found that for the outer two planets, the TTVs should be observable.

I then measured the TTVs from the lightcurve, and sure enough – there was something there. After some discussion, we realized we could measure the masses of the planets from those TTVs! Though I had never done dynamical fits before, I wrote the code to utilize Kat Deck’s TTVFAST code in a Markov Chain Monte Carlo fit. With some advice from Kat and help from Fred, I eventually got the fits working and we were able to measure or put limits on the masses of each planet.

In a little less than two weeks, we had put together a paper deriving planet properties from the lightcurve, mass limits from the TTVs, and showing that you CAN detect companions to hot Jupiters using TTVs!

This result is exciting because it is the very first time a hot Jupiter has been found to have such close-in other planets. Before this discovery, it was unclear if hot Jupiter could have nearby friends, as they might destabilize the friends’ orbits during migration. This discovery opens up new questions about how these systems form – it is possible that there is more than one migration mechanism for hot Jupiters.

The paper on WASP-47 and its new companions, which was published earlier this week in ApJ Letters and is available at http://arxiv.org/abs/1508.02411, was a collaboration between myself (Juliette Becker, a graduate student at the University of Michigan), graduate student Andrew Vanderburg (Harvard CfA), Professor Fred Adams (the University of Michigan), Professor Saul Rappaport (MIT), and Hans Schwengeler (a citizen scientist).

 

New Kepler Data: Feb 1

By Zak Kaplan (Yale undergrad)

Planet Hunters has just completed its first analysis of the Kepler data! With your classifications, we were able to extract information about all of the 150,000 light curves. We would like to thank the more than 16,000 registered users who have helped make Planet Hunters such a success. Special thanks to the collectors and the top 14 users who each analyzed over 5000 light curves, accounting for over 10% of the 1.3 million classifications.

To give a better idea of what you’re measuring in a transit curve, a planet crossing a star causes about the same dimming of light as a small fruit fly passing in front of a car headlight. Now imagine that car is a few thousand light-years away, and you get a sense of just how amazing the Kepler data and your work have been.

The Kepler team will have a press conference on 2 February 2011, announcing their new candidates and releasing new data that will more than quadruple the amount of data that we can serve to you.  You can join the live broadcast on NASA TV at 1pm EST and we will post the Kepler press release here next Wednesday.

For the past week, the Exoplanet Research Team at Yale has been analyzing over 3500 light curves that you marked with promising transits. We found that PH users marked transits that we would have missed. From this first set of data, we have culled approximately 300 strong planet candidates, as well as several new eclipsing binary star systems.  We are formatting the new Candidates pages now so that they will appear before the Kepler press conference.  Then, you can check to see which objects you detected independently, before the Kepler team announced them.  It will be especially interesting to see if there are some good candidates that you all found that are not on their new list. If so, we will ask the Kepler team for feedback on your new candidates.

We hope you will help continue to prove the power of citizen science, as we look for more planets beyond our solar system. Until then, keep on hunting!

Planet Hunters Introduction

Planet&SunSmall-2

Hi, I’m Meg Schwamb a postdoctoral fellow at Yale University and member of the Planet Hunters Team. Welcome to Planet Hunters! We’ve been working hard, and we are excited to finally show you the finished product!

In the last decade, we have seen an explosion in the number of known planets orbiting stars beyond our own solar system. With ground based transit searches, stellar radial-velocity observations, and microlensing detections, over 500 extrasolar planets (exoplanets) have been discovered to date. Studying the physical and dynamical properties of each of these new worlds has revolutionized our understanding of planetary formation and the evolution of planetary systems. But we have just barely scratched the surface in understanding the diversity of planetary systems and planet formation pathways.The current inventory of known exoplanets has been limited to mostly Jupiter-sized or larger gas-rich planets, most orbiting extremely close to their parent stars. The current inventory of known exoplanets has been limited to mostly Jupiter-sized or larger gas-rich planets, most orbiting extremely close to their parent stars. While these planets have provided great insight into the formation of giant planets, beyond Mercury, Venus, Earth, and Mars, in our own solar system, little is known about the formation and prevalence of rocky terrestrial planets in the universe.

Finding Earth-size planets is a difficult task because the transit-signals, the dimming of the star’s light caused be a planet moving in front of the star, are so shallow. For a Jupiter-size planet, the transit depth is ~1% of the star’s brightness. For an Earth-size planet transiting a Sun-like star the decrease in brightness is less than .001%. Ground-based surveys have not reached the sensitivity to detect such planets around stars similar to our Sun, but with NASA’s space-based Kepler mission, launched in March 2009, astronomers are primed to start a new era in the study of exoplanets. Even with the exceptional data from the Kepler telescope, finding these Earth-sized planets will be extremely difficult, but in the age of Kepler, the first rocky planets will likely be detected including the potential to find Earth-like planets residing in the habitable zone, warm enough to harbor liquid water and potentially life on their surfaces.

NASA’s Kepler spacecraft is one of the most powerful tools in the hunt for extrasolar planets. The Kepler data set is unprecedented, both in observing cadence and in the photometric precision. Before Kepler, the only star monitored this precisely was our own Sun. The lightcurves reveal subtle variability that has never before been documented. The Kepler data set is a unique reservoir waiting to be tapped. Kepler lightcurves are now publicly available with the first data release this past June and the next release scheduled for February 2011.

The Kepler Team computers are sifting through the data, but we at Planet Hunters are betting that there will be transit signals which can only be found via the remarkable human ability for pattern recognition. Computers are only good at finding what they’ve been taught to look for. Whereas the human brain has the uncanny ability to recognize patterns and immediately pick out what is strange or unique, far beyond what we can teach machines to do. With Planet Hunters we are looking for the needle in the haystack, and ask you to help us search for planets.

This is a gamble, a bet, if you will, on the ability of humans to beat machines just occasionally. It may be that no new planets are found or that computers have the job down to a fine art. That’s ok. For science to progress sometimes we have to do experiments, and although it may not seem like it at the time negative results are as valuable as positive ones. Most of the lightcurves will be flat devoid of transit signals but yet, it’s just possible that you might be the first to know that a star somewhere out there in the Milky Way has a companion, just as our Sun does.

Fancy giving it a try?