Archive by Author | The Zooniverse

Hot Friends of Hot Jupiters: The WASP-47 system

Ever since a mechanical failure caused the end of the original Kepler mission in 2013, the Kepler spacecraft has been conducting a survey of new stars, searching for planets across the ecliptic plane in its new K2 mission (https://blog.planethunters.org/2014/12/12/more-about-the-k2-campaign-0/). The K2 dataset is a goldmine of fascinating science results. One such result is the recent discovery of two new planets in the WASP-47 system.

Until a few months ago, everyone knew that hot Jupiter planets don’t have “friends”, or nearby small planets in close orbits to the host star. These other planets had been searched for extensively, through radial velocity measurements, analysis of the transit times of the hot Jupiters, and even through transits by Kepler during its original mission. All of these searches turned up nothing.

This all changed one day last July, when Hans Martin Schwengeler, a Planet Hunter who enjoys poring over Kepler and K2 data searching for new transiting planets by eye, came across the telltale signatures of two extra transiting planets in the hot Jupiter system WASP-47. WASP 47b was, by all indications, a perfectly normal hot Jupiter — in the discovery paper, Coel Hellier wrote “With an orbital period of 4.16 days, a mass of 1.14 Jupiter masses, and a radius of 1.15 Jupiter radii, WASP-47b is an entirely typical hot Jupiter”. The discovery of additional transiting planets dramatically changed the narrative.

When Hans came across the planets, he posted them to the Planet Hunters forum, where he and other citizen scientists discuss their findings. Andrew Vanderburg came across the post suggesting that a known hot Jupiter had planetary companions. Using his K2 data reduction pipeline (https://blog.planethunters.org/2015/01/08/a-recipe-for-making-a-k2-light-curve/), he analyzed the light curve and confirmed Hans’s discovery – there were additional planets in the system, a super-Earth at a 0.8 day period and a Neptune at a 9 day period!

Andrew emailed me, and at first I hardly believed that the lightcurve was real. How could a hot Jupiter have close-in planetary companions? I knew people had been looking for this type of companion for years via both photometry and transit timing variations, but the lack of discoveries indicated that they might not exist. I performed some numerical stability simulations (because it seemed at first like this system could not be dynamically stable!) and sure enough, the N-body simulations showed that the system was likely stable on timescales of 10 million years.

At that point, we formed a team with Hans, Andrew, MIT Professor Saul Rappaport, University of Michigan Professor Fred Adams (my advisor!), and me. Once this team was formed, we devoted ourselves to understanding as much about the systems as we could. Some work by Saul and Andrew confirmed that the planets were all orbiting the same star, Andrew fit the lightcurve to get the planet properties, and I ran more stability simulations. Soon enough, Fred suggested that I look at what transit timing variations (or TTVs, which happen when transits come late or early because of the gravity of other planets in the system) we would theoretically expect to see from the system – and I found that for the outer two planets, the TTVs should be observable.

I then measured the TTVs from the lightcurve, and sure enough – there was something there. After some discussion, we realized we could measure the masses of the planets from those TTVs! Though I had never done dynamical fits before, I wrote the code to utilize Kat Deck’s TTVFAST code in a Markov Chain Monte Carlo fit. With some advice from Kat and help from Fred, I eventually got the fits working and we were able to measure or put limits on the masses of each planet.

In a little less than two weeks, we had put together a paper deriving planet properties from the lightcurve, mass limits from the TTVs, and showing that you CAN detect companions to hot Jupiters using TTVs!

This result is exciting because it is the very first time a hot Jupiter has been found to have such close-in other planets. Before this discovery, it was unclear if hot Jupiter could have nearby friends, as they might destabilize the friends’ orbits during migration. This discovery opens up new questions about how these systems form – it is possible that there is more than one migration mechanism for hot Jupiters.

The paper on WASP-47 and its new companions, which was published earlier this week in ApJ Letters and is available at http://arxiv.org/abs/1508.02411, was a collaboration between myself (Juliette Becker, a graduate student at the University of Michigan), graduate student Andrew Vanderburg (Harvard CfA), Professor Fred Adams (the University of Michigan), Professor Saul Rappaport (MIT), and Hans Schwengeler (a citizen scientist).

 

Advertisements

Comets or Aliens?

Let’s deal with the big question first. Has Planet Hunters discovered aliens?

The answer is no. But that doesn’t mean that all of the press who have written about us in the last 48 hours, sending a flood of volunteers to the site, are completely misguided. Let me backtrack…

A few weeks ago we submitted the ninth planet hunters paper to the journal, and that paper is now available on the arXiv service. Led by Tabetha Boyajian at Yale, it describes a rather unusual system (what the Atlantic called the most interesting star in the Galaxy), which was identified by Planet Hunters, four of whom (Daryll, Kian, Abe, Sam) are named on the paper*. They spotted a series of transits – which is normally what signifies the presence of a planet – but these were unusual.

The star’s light dimmed for a long period of time, loosing a fifth of its brightness for days or even months at a time. More mysteriously, the duration of the dips was not always the same, so this couldn’t possibly be a planet. This behaviour is unique amongst the more than a hundred thousand stars studied by Kepler – we have a bone fide mystery on our hands.I think the team’s immediate thoughts were that it must be the star itself that’s misbehaving, but stars aren’t known to behave like this and some careful follow up reveals it to be nothing more than a normal F-type star, slightly hotter and more massive than the Sun. So it’s not the star, and we’re sure too that it’s not Kepler itself misbehaving; something is really blocking the light from this star.One option is a disk of dust around the star. It’s from such disks that planets form (see DiskDetectives.org for more on this!) and so that wouldn’t be too surprising. Yet enough dust to cause the deep eclipses we see would glow brightly in the infrared, and there’s no sign of a strong infrared source around this star.

You can read the paper to find out what else we considered, but we think the best explanation is that there is a group of exocomets in orbit around the star. Comets are an appealing scenario to invoke because they would be faint in the infrared, and because they move on elliptical orbits, accounting for the random timing of the transits and their different lengths. Such a group of comets could have come from the breakup of a larger object, leaving a cloud of smaller remnants in similar orbits behind.

Much detailed work is needed to flesh out the details of this (pleasingly outlandish!) scenario. One possibility is that the recent passage of a nearby star triggered the cometary bombardment whose effects we’re seeing. The paper is currently in the peer review process and there is – of course – the possibility that there is a perfectly sensible solution we haven’t yet considered. However, so  far over 100 professional scientists have had a look at the lightcurves and not managed to come up with a working solution.

One other proposed theory is that this pattern of behaviour is due to a fleet of alien spaceships in orbit around a star, a possibility considered by Jason Wright and collaborators here. Jason and co were tipped off about our discovery by the team, and it’s included in their paper as an object with ‘a bizarre light curve consistent with a “swarm” of megastructures’, much to the excitement of much of the internet. ‘Consistent with’ isn’t the same as ‘definitely is’, of course – and personally, my money is very firmly on the comet theory with a side bet on weird stellar behaviour – but until those models are properly investigated alien spaceships remain a possibility. The Wright paper points out this star is now a supremely interesting target for SETI (the search for extraterrestrial intelligence), and we agree – I hope radio astronomers will go and listen for signals. We need more observations of transits in action, too, and will be trying to follow-up to try and work out what’s actually going on.In the meantime, who knows what else is lurking in the Kepler data? Planet Hunters is about finding planets, but this ability to identify the weird and unusual is one of the project’s great advantages. Get clicking at www.planethunters.org, and let us know through Talk if you find anything a little odd.

Chris

* – This isn’t the final version of the paper, and we have more names to mention too before we’re done.

Extracted Lightcurves From Vanderburg & Johnson (2014) Now Available at MAST

A new MAST High Level Science Product from K2 has been delivered that includes extracted lightcurves. Courtesy of Vanderburg & Johnson (2014), long-cadence targets from Campaigns 0 and 1 now have detrended, extracted lightcurves available at MAST, including 20 different photometric apertures. There’s a MAST Classic Search Interface so you can get lightcurves based on target IDs, coordinates, EPIC catalog fluxes, etc. You can also use our interactive plotter to explore the lightcurves using any of the photometric apertures before downloading the FITS files. Check out all the details here: http://archive.stsci.edu/prepds/k2sff/

A Recipe for Making a K2 Light Curve

Today we have a post by Andrew Vanderburg. Andrew is a graduate student at Harvard University who works on producing and correcting K2 light curves and searching them for planets. He recently joined the Planet Hunters team to provide K2 light curves for classification.

As readers of this blog are probably well aware, the K2 mission is an exciting new opportunity for the Kepler spacecraft to continue searching for exoplanets, even after the failure of two reaction wheels ended the original Kepler mission. Making K2 work is in several ways more complicated than Kepler, and previous posts have already discussed how Kepler is stabilized by balancing against solar radiation and pointing itself opposite the sun in the ecliptic plane. Even with this very clever strategy for data collection, getting high quality data from K2 is not straightforward.

Once it became clear in early 2014 that Kepler would be able to continue gathering data, one of the biggest uncertainties about the K2 mission was: “How well can Kepler measure photometry in this new operating mode?” If Kepler’s worsened ability to point itself degrades the quality of its data, it may be harder for the K2 mission to accomplish its goals of finding exoplanets in new environments and around different types of stars. When the Kepler team released data from a 9 day engineering test of the new operation mode taken in February 2014, we attempted to answer that question.

keplervsk2

Hot Jupiter light curves from Kepler (red, bottom) and K2 (blue, top). K2 data is dominated by jagged noise that was not present during the original Kepler mission.

After four years of being spoiled by ultra-high-quality photometry from Kepler, our first look at the K2 data came as a bit of a shock. Unlike the pristine Kepler data, K2 data (shown compared to Kepler in the first image) had wild jagged features contaminating the light curve, which made it hard to see all but the deepest planet transits. In order to continue searching for small planets in the K2 mission, something would have to be done to improve the quality of the photometry.

We started out by trying to figure out what was causing the jagged features in K2 data. Since nothing had changed with the spacecraft other than the reaction wheel failure, it was a pretty good bet that the jagged noise was due to the decreased stability of the spacecraft. We checked to see if this was the case by measuring the apparently position of stars in the images Kepler took (shown in the second image), and comparing them to the measured brightness.

Screen Shot 2015-01-07 at 4.03.59 PM

Measured brightness and image position versus time (Vanderburg & Johnson 2014). The jagged noise in K2 data is caused by the spacecraft’s jittery pointing.

 

The top panel shows the brightness of one particular star called EPIC 60021426 over the course of a week of the engineering test, and the bottom two panels show the horizontal and vertical position of the star, as seen by Kepler, over the same time period. It turns out that just like a cell phone video taken by a person with shaky hands, the images Kepler took were jittering back and forth. And more importantly, the jagged pattern in the location of the star in the image looked very much like the pattern seen in the brightness data.

We concluded that the additional noise in the data was caused by Kepler moving back and forth ever so slightly as it rolled due to a slight imbalance between the spacecraft and the Solar wind. Every six hours or so, Kepler’s thrusters fired to bring the telescope back to its original position. But the most important thing we concluded was that the additional noise in K2 data is very predictable. If the noise is predictable, then it’s correctable.
The third image shows the brightness of a particular star (once again, EPIC 60021426) measured by K2 on the vertical axis, and the position of the star on the horizontal axis. The blue dots indicate brightness measurements during normal K2 operations, and they form a tight relation with the image position. The jagged noise in K2 data depends only on where the image falls on the Kepler camera. With this realization, it’s simple to draw a line through the points (the orange line in the image), and divide it away. The red points are points taken while Kepler’s thrusters were firing, and don’t fit the pattern of the rest of the points. We simply throw them out.

flatfield-1

Measured brightness versus image position (Vanderburg & Johnson 2014). The jagged noise is very predictable, and depends only on where the star is located in the Kepler images.

After dividing the orange line from the data and removing points taken during thruster fires, we are left with a “corrected” light curve. The fourth image shows the result of the correction. The top light curve (blue) shows the raw, uncorrected K2 data, and the bottom, orange light curve shows the corrected K2 data. The correction substantially improves the quality of the K2 data.

f5

K2 light curve of EPIC 60021426 (Vanderburg & Johnson 2014). The correction improves the quality of the data by a factor of 5 in this case.

This type of processing improves the precision of K2 to where it’s close to that of Kepler — within a factor of two for most stars. This makes it possible to detect small planets, even when the planetary signals are much smaller than the jagged variations removed by this process. We discovered the first K2 exoplanet, HIP 116454, using this exact technique, and the one transit we found was totally obscured in the raw K2 data (as shown in the fifth image).

sfflc

Raw and corrected K2 light curve of HIP 116454 (Vanderburg et al. 2014), also known as EPIC 60021410. Without removing the jagged noise from the K2 light curve, this transit would be totally undetectable.

Even now, however, this process is not perfect, and we’re still working to make it better. There are quite frequently glitches and other errors that affect the light curves and make it difficult for computer algorithms to pick out all of the transit signals. Trained human eyes like yours will be crucial for picking out all of the exciting exoplanets that K2 will observe.

 

 

Kepler 2.0

It’s up!

The first science data from the new Kepler K2 mission is up on Planet Hunters just waiting to be looked at for new planets, eclipsing binaries, and whatever else lies in the data. This is a set of completely new stars! (Check out the K2 page for more information about the K2 mission.)

This data may go fast, so get classifying now! But don’t worry, there will be more K2 data when the next quarter is released. And when each K2 quarter is finished, keep classifying stars from the four-year Kepler mission to help solve one of the biggest mysteries in astronomy: how common are planets?

– Joey

PH2 b Paper Accepted

Today’s post is from Ji Wang. Ji is a post-doctoral associate working with Planet Hunters at Yale University. He obtained his PhD at the University of Florida in 2012. He is interested in exoplanet detection and characterization, statistics of exoplanets and its link to planet formation and evolution.

We are delighted to announce that the discovery paper of PH2 b is officially accepted and published on Astrophysical Journal. The link to the paper can be found here. PH 2b has been assigned with a Kepler number: Kepler-86b. PH2 b is a Jupiter-sized planet in the habitable zone of a solar-like star. Its radius is ten times of the Earth radii and it finishes one round trip around its host star every 282.5 days. PH2 b has the forth longest orbital period among Kepler detected planets, and it has the largest radius among all confirmed Kepler planets with periods longer than 100 days.

Over the past nine months, we have been working on the follow-up observations for PH2 b. From June 3rd 2013 to June 25th 2013, we obtained 4 data points of high-precision radial velocities using the Keck HIRES spectrograph. These observations allow us to rule out the possibility of false positives such as an eclipsing binary and a brown dwarf at a confidence of 96% and 80%, respectively. More radial velocity measurements in the future will allow us to precisely determine the mass of PH2 b.

Along with PH2 b, we have also announced 42 plant candidates identified by Planet Hunters. Most of them have orbital periods longer than 100 days and 20 of them are potentially located in the habitable zone. Our discoveries nearly double the number of previously known planets in the habitable zone and provide a sample of planet candidates for the study of planet formation and evolution at the habitable zone distances. Most of the planet candidates are larger than the radius of Neptune, they may not be habitable by themselves because of a lack of a rocky surface for life to form and evolve. However, satellites around them, analogs of moons around Saturn and Jupiter, may harbor life in a similar way as depicted in the movie of
Avatar. Our discoveries are therefore suitable for the search for exo-moons, which is a frontier in the exoplanet research. As we are writing this blog, we already know that other groups are using the planet candidates in our paper to study the interior structure of gas giant planets and to conduct follow-up observations to confirm their planet nature. The race is on, but we are so glad that the Planet Hunters’ work has drawn so much attention across the community.

A Newly Confirmed Planet and 42 Additional Planet Candidates Part 2

For our latest planet candidates paper, there were many volunteers who helped identify these potential transits on Talk. To thank all of them for their hard work and effort, their contributions are individually acknowledged here. A few people stood out organizing a  significant follow-up effort on their own working to  sort these potential candidates identified on Talk into a list of potential planet candidates. This included looking for repeat transits and performing checks  to rule out potential  false positives. To acknowledge their effort, the science asked Abe Hoekstra, Tom Jacobs, Kian Jek, Daryll LaCourse, and Hans Martin Schwengeler  to be co-authors on the paper. I’ve asked them each write a bit about this experience and about being part of Planet Hunters.

Abe Hoekstra

I am from the Netherlands and am fifty years of age. In the past I used to be a teacher. Astronomy has always been a hobby of mine, I am what they call an armchair astronomer. I couldn’t pursue a career in astronomy as I am very bad at maths and physics. Early 2011 I got my first laptop and I subscribed to the NASA Newsletter. When I was reading up on exoplanets, I came across Planet Hunters. I am very glad I can make a contribution to astronomy, however small.

When I heard my name was going to be mentioned on the Planet Hunter Planet Candidates paper, I was quite surprised, excited and very honoured. I have been so busy with eclipsing binaries, variable stars, dwarf novae and checking out dozens and dozens of collections of fellow planet hunters, that I almost forgot I made some contributions with respect to finding planetary transits.I had to check the candidates on the list to see where I made those contributions. I found  one candidate that I may have discovered first, shortly after I started here in February 2012, and another where I was among he first to spot a transit.  I also helped in  finding repeats of transit features, by checking out NASA’s Exoplanet Archive  (NEA). I definitely remember two candidates I found in other planet hunters’ collections in November.Finding a transit feature and/or repeat is very exciting. It doesn’t stop there. I am among those planet hunters that regularly check stars on Sky View and the NEA. Other hunters are very experienced in doing contamination checks, determining the length and depths of transits, and also determining the period of a planet.That is what I like about Planet Hunters. There is a great sense of community and cooperation here. I hope a lot of planet hunters get a mention in the paper. A great deal of hard work has gone into finding these planet candidates, and finding your name up there is very rewarding.Let’s hope we can add a few more candidates to the list in 2013!

Tom Jacobs

I am a graduate of the University of Washington with a non science degree in Business Administration and later commissioned as an officer in the U.S. Navy. Currently, I reside in Bellevue, Washington with my family and work as an employment consultant for workers with developmental disabilities going on 17 years. I have always been a treasure hunter and consider Planet Hunters a great way to find planet and other unique star treasures and learn some astrophysics through immersion along the way.

It is a great honor to be part of this planet candidate discovery paper as a Planet Hunters’ citizen scientist. Nothing occurs in a vacuum at Planet Hunters.  If not for all your hard work in classifying light curves and posting your finds on Talk, most likely these planet gems would have slipped away unnoticed. You all deserve as much credit as those mentioned in the  science paper.  It is all about teamwork and diligent pursuit in analyzing the Kepler light curves. We are collectively demonstrating what the incredible pattern recognition of the human mind can accomplish that challenges the high powered state of the art computer algorithms and we are having fun while doing it.

Kian Jek

I have been fascinated by the stars ever since my uncle handed me a copy of a book by H. A. Rey when I was 10 years old. It wasn’t until much later when I had children of my own that I realized that Rey also wrote the Curious George books. I guess I must have been a geek since then because the other things going on that grabbed my attention were the Apollo moon landings and the original Star Trek series.

I used to spend hours with a tiny 2-inch telescope at night looking for the Messier objects, not knowing that it was almost impossible to see them all with an aperture that small – I was hung up on M1 for a long time! It was astronomy got me hooked on science but by the time I went to college I was sidetracked by an interest in DNA and I went on to get a degree in molecular genetics at Cambridge in the UK. One of my biggest thrills while studying there was being able to use a 180-year old 12-in refractor, the Northumberland telescope (http://www.ast.cam.ac.uk/about/northumberland.telescope) during freezing winter mornings. You had to open and rotate the observatory dome using a hand-crank! At last I managed to see the Crab Nebula for the first time. It was, of course, not as impressive as the photographs in the books.

After my studies, I was again sidelined by another passion, I spent the next 20 years or so in a career in computers, ending up as a founder of an Internet service provider during the start of the dot-com craze in 1995. In December 2010 I rekindled my long-lost affair with astronomy by volunteering on Planethunters.org. I am very sure it was in December very near the beginning of the project because I remember working through Christmas Day 2010 writing a javascript planetary calculator.

It’s been two years since the Planet Hunters was initiated and I’m so proud to be a part of its community. We’ve come quite a long way since those early days in December 2010. Back then very few amateur volunteers like ourselves really knew much about exoplanet transit photometry and we were marking every dip in flux as a transit (I guess many people still do!) and we thought that going beyond 5000 classifications was a big deal – there is even a forum topic devoted to this! I won’t mention who he is because he might be embarrassed but he is one of the co-authors and among my most prolific collaborators – he has done over 100,000 classifications!

Since 2010 then we’ve learned much about determining what is and isn’t a planet candidate. We discovered that 99% of transit events weren’t even due to planets. Most of the time they were glitches and even if they were real, they turned out to be false positives, e.g eclipsing binaries (EBs) or contamination due to background blends. I recall being so frustrated by demonstrating that so many of these were EBs that I started a secondary effort to collect what we called unlisted EBs – these were EBs not identified by Kepler’s EB expert Andrej Prsa.

But over the two years we learned how to separate a good PC from a false positive. We learned how to use a periodogram and phase plots, what were pixel centroid shifts, how to analyze TPFs, how to pull down Skyview and UKIRT images and how to model a transit light curve accurately.

Although I was named in the PH-1 discovery paper, and as exciting as that discovery is, I feel that was just happenstance. My more important contribution to the Planet Hunters initiative has been in collecting, compiling and curating the efforts of the community – In the last two years the Planet Hunters have turned up a lot of potential PCs that seemed to me to be real, and by applying all the methods and techniques mentioned above I eliminated all those that failed the tests. We were disappointed a few times when many of these discoveries were overtaken by events. I recall that the list was pared down from over 50 PCs down to 20 when the February 2012 Kepler paper was released (Batalha et al 2012). But I realized that if over 30 of our independent discoveries were real PCs, that fact alone vindicated our efforts. Slowly that list went up to beyond 30 and then reached 40 PCs. In May 2012, another paper by the Princeton team (Huang et al, 2012) took out another chunk of our PCs, but we continued to persevere and by the time the data releases of July and October came around, we had even more PCs to consider. I spent the last quarter of this year rounding these up and characterizing them.

I would not have been able to do this with the help and contribution of the community. I’ve been very privileged to work with some of the smartest and dedicated citizen scientists on this site. I tried my best to follow up on every e-mail and private message you sent me – please keep them coming!

Daryll LaCourse

I’m a Canadian aerospace machinist and amateur astronomer living in the Pacific Northwest. I prefer working with Kepler data to backyard stargazing as heavy clouds and rain can’t interfere with the former.

I am very pleased to see the release of the fifth Planet Hunters discovery paper and the addition of PH2b to the family of confirmed exoplanets. Every volunteer that has participated in the Planet Hunters project thus far has played an important role in the efforts that led to the identification and consolidation of this latest candidate list, which includes a stunning array of potential habitable zone prospects. It is impressively difficult to confirm that a Kepler candidate is a bona fide exoplanet rather than a false positive; thanks to the meticulous follow up work of Ji Wang and the rest of the PH Science team we can say with confidence that these 43 candidates are very likely the real deal.

It has been a privilege to work with so many talented individuals on PH Talk as these discoveries were sifted from the many thousands of highlighted light curves. The tenacity and resourcefulness of the PH volunteers can’t be understated or underestimated, and I look forward to what we will find in 2013 as the extended mission progresses. There are already new targets of interest popping up on the radar for the team to pursue, and the single/double transit candidates (some of which are mentioned in the new paper) hint at a hidden population of long period exoplanets that have yet to fully reveal themselves to us. How will our own solar system eventually fit into this widening hierarchy of possible arrangements and configurations? How common are exoplanets within the habitable zones of Sun-like stars? These questions may not be resolved quickly, but the discovery of every new candidate brings us closer to definitive answers. Experts in the field have speculated that the first true Earth analog candidate may be found this year, which will be a very exciting and historic milestone. I don’t think it is a huge stretch of the imagination to consider that with some sharp eyed luck, it may even be found by one of you!

Hans Martin Schwengeler

I’m a regular user (zoo3hans) on PH, more or less from the beginning two years ago. My name is Hans Martin Schwengeler and I live near Basel in Switzerland. I’m 54 years old, I’m married and we have two children. I’m a mathematician and work as a computer professional. I like to advance Science in general and Astronomy in particular. I did work a few years at the Astronomical Institute of the University of Basel (before it got closed because they decided to save some money…), mainly on Cepheids and the Hubble Constant (together with Prof. G.A. Tammann). Nowadays I’m very interested in exoplanets and spend every free minute on PH.

I’m pleased to hear that I’m going to be mentioned as a co-author of the PH Habitable Zone (HZ) candidates paper. My motivation to participate in the PH project is not really to “name” a planet or such a silly thing, but to advance Science in general and Astronomy in particular. Probably I’m just a curious fellow, although I’ve got named “a cold precise German” on PH Talk by someone (actually I’m Swiss).

I think we have a few very good cases of fine planet candidates collected over the last two years, a few of them even in the HZ of their host stars. Kian Jek (kinjin) has made a good list, many other PH users have also contributed a lot to our collaborative effort. I try to classify as many stars as possible, and also to comment on promising cases, or comment avoiding glitches and other bad features. To examine a promising star, it needs a lot of time. First I just look at the light curve and try to let my brain do the pattern recognition. I actually believe it might indeed be superior to computer algorithms to discriminate between real transits and just glitches or processing artifacts. In my experience it only works down to about 2.0 R_Earth planets, below this border size they cannot be detected anymore just by eye without prior detrending of the light curve. Second I do therefore download the FITS files from MAST and detrend roughly the light curve. Further inspection of the whole Q0-Q13 detrended light curve often reveals already if it might be an interesting case or not. If I suspect a regular signal (i.e. a well defined period) is present in the data, then I try a periodogram to see if the potential transit looks symmetrical, U-shaped and so on. Also important is to check the sky view. We are dealing with stars on the sky after all.A bit frustratingly often it’s just contamination by a nearby background star. Of course I post all findings to the PH Talk pages, so others can profit from the work done so far, and to get their opinion about the case.

Although I have classified over 30000 stars so far, even I select sometimes
a glitch for a transit. It’s not an easy “game”, but rather addictive I think. I also like the teamwork aspect of the PH community. It’s great to get help from the
“specialists” out there who can do contamination vector determination, Keppix series analysis, transit curve fitting and much more. I’d like to thank them all for their great help. I thank also Meg for her great effort to vet more promising exoplanet candidates. PH is a great project!

Yours,
Hans Martin Schwengeler (aka zoo3hans)

A Newly Confirmed Planet and 42 Additional Planet Candidates

PH2_moon

Artistic rendition of a sunset view
from the perspective of an imagined Earth-like moon orbiting the giant planet, PH2 b. Image Credit: H. Giguere, M. Giguere/Yale University

We are pleased to announce the discovery and confirmation of our second confirmed planet : PH2 b-a Jupiter-size planet in the habitable zone of a star like the Sun-by the Planet Hunter project. The paper has already been submitted to the Astrophysical Journal and has been made public via arxiv.org.

The estimated surface temperature of 46 degrees Celsius is right for there to be liquid water, but it is extremely unlikely that life exists on PH2 b because it is a gas planet like our Jupiter, and thus there is no solid surface or liquid environment for life to thrive. In order to study this interesting system, we used the HIRES seo services spectrograph and NIRC2 adaptive optics system on the Keck telescopes in Hawaii to obtain both high resolution spectrum and high spatial-resolution images. The observations help us to rule out possible scenarios for false positive detections and give us a measured confidence level of more than 99.9% that PH2 b is a bona-fide planet rather than just an illusion.

In the meantime, we also announce the discoveries of 31 long-period planet candidates with periods more than 100 days, including 15 candidates located in the habitable zones of their host stars. The candidate list is a joint effort between the volunteer Planet Hunters, and the science team. Each individual planet candidate was identified and then discussed on Talk by Planet Hunters. Several dedicated Planet Hunters collected information on candidates and carried out light curve modeling and initial vetting for false positives. The science team then decided the priority of each target on the candidate list and conducted follow-up observations.

Although most of these planets are large, like Neptune or Jupiter in our own Solar System, these discoveries increase the sample size of long-period planet candidates by more than 30% and almost double the number of known gas giant planet candidates in the habitable zone. In the future, we may find moons around these planet candidates (just like Pandora around Polyphemus in the movie Avatar) that allows life to survive and evolve under a habitable temperature.

In addition to the 31 long-period planet candidates, we announce a watch list for 9 further planet candidates which have only 2 transits observed. They do not currently meet the three-transit criteria of being a planet candidate set by the Kepler team. However, the Planet Hunters were able to pull them out and a future third transit would greatly increase the probability of them being real, allowing us to promote them into the full candidate list.

Lots of our candidates appear on a recent list published by the Kepler team (Tenenbaum et al. 2012) of possible transit signals, but it’s good to see they have now passed the additional tests to be planet candidates (not all of the Tenenbaum objects are real planet candidates; there are plenty of false positives). 6 candidates on our list were somehow missing in that list, all of which have periods of more than 240 day. This is an indication that we, the Planet Hunters, are effective in detecting long-period planet candidates. Heading into the future, we have reason to believe that more long-period planets and potentially habitable planets can be discovered by us. Go Planet Hunters, go hunting planets!

Ji Wang

Ji is a post-doctoral associate in the department of Astronomy at the Yale University, and the lead author on the latest Planet Hunters paper. Before assuming his current position, he attended college at the University of Science and Technology of China and obtained his Ph.D. at the University of Florida. The roll of honour for planet hunters who contributed to these discoveries is here.

Happy 2nd Anniversary

2012 Poster Extract

It’s been two years since everyone embarked on the Planet Hunters adventure. To celebrate we’ve created another anniversary poster, featuring the names of all the participants. You can download it here (warning that’s a 20 MB file) or a slightly smaller one here (6 MB).

As you know may know, Planet Hunters is now producing science! We already have three papers published and online  -with more to come. You can see these and all the Zooniverse publications at http://zooniverse.org/publications. Happy Anniversary everyone!

Live Chat at 3pm GMT Today

Later today (3PM GMT / 9am CST) we’ll be holding a Google+ Hangout on Air to talk about Planet Hunters science and news. The video feed will be shown here and you’ll also be able to find us find us on the Zooniverse Google+ Page.

If you have questions for the Planet Hunters team you can ask them, either by leaving a comment here on the blog or by tweeting us @planethunters.

PS.  To celebrate  Planet Hunters turning 2 we’ve created another anniversary poster  featuring the names of all the participants.