Archive by Author | debrafischer

Planet Hunters: a new beginning!

In 2010, the Planet Hunters website began showing light curves from the Kepler mission to Citizen Scientist volunteers. This project was different from other Zooniverse projects like the successful “Galaxy Zoo” because instead of showing beautiful images, we were serving up “boring graphs” of brightness measurements for 150,000 stars.
• Would people be interested in spending time sifting through these data to find changes in brightness from transiting planets?
• Would humans beat out the sophisticated computer algorithms designed by NASA scientists?
• Would Planet Hunter volunteers contribute unique scientific discoveries that would otherwise be undiscovered today?

We now know the answers to these questions: yes, yes and yes! In retrospect, the right question would have been: can the scientists keep up with the wave of discoveries from Planet Hunter volunteers? Barely!

Planet Hunters has been a game-changer and showcases the ability of Citizen Scientists to make important discoveries. Here are some highlights of the ways that you have changed our understanding of exoplanets:
1. Planet Hunters independently identified about 2000 of the planets found by the NASA Kepler team.
2. Excluding cases where a discovery was also made by science teams working on the Kepler data, Planet Hunters uniquely contributed 120 unique discoveries that would otherwise still be buried in the Kepler data today. For transiting planets with orbits longer than 2 years, Planet Hunters detected 50% of the planets that are known today.
3. You identified hundreds of eclipsing binary stars, and most surprising, planets orbiting outside of eclipsing binary systems! Who knew that these objects could even exist? …you found them!
4. You identified the most mysterious star in the galaxy: “Tabby’s Star,” which gained notoriety when Jason Wright at Penn State suggested that this could be the sign of an alien megastructure. We did not promote that intriguing explanation, but Tabby Boyajian gave an amazing TED talk about this discovery and has an ongoing campaign to study that star.

This scientific legacy could not have happened without the many, many hours that all of you put into this project. Your patient and persistent clicks on prospective transit events have changed our understanding of exoplanets. Thank you for your hard work!  We also owe a debt of thanks to the dedicated Zooniverse team, the postdocs, grad students and undergrads who worked tirelessly on Planet Hunters!

Over the past 8 years, we became friends. We chatted through the Talk site, met each other at Kepler meetings and our most active users wrote data analysis tools and helped to guide new volunteers. Many of you were co-authors on Planet Hunter discovery papers. In 2012, Planet Hunter Kian Jek won the American Astronomical Society Chambliss prize for “achievement in astronomical research by an amateur astronomer.” In 2016, that prize was awarded to Daryll LaCourse. In 2017, we were saddened by the passing of Gerald Green, a co-author on science papers and one our most active volunteers. In May 2018, Smith College students Rebekah and Jennifer Kahn, who became interested in astronomy while volunteering as high school students, arrived at Yale to work on summer research, modeling of the Kepler-150 system.

Now, it’s time for a transition – a new beginning for Planet Hunters. There will be a new look and feel to the website, and the light curves will come from the NASA TESS mission (launched in April 2018), instead of Kepler. We need you more than ever and hope that you’ll continue with the search for transiting exoplanets and other weird things in the galaxy!

Advertisement

“ I wanted to contribute to the world of planetary science in a meaningful way”

-an interview with Al Schmitt by Jennifer and Rebekah Kahn

Al Schmitt is a long-time Planet Hunters member. Having lived during the space program era and been an avid follower of subsequent space missions, Al found that Planet Hunters enabled him to actively participate in planetary science research. In fact, he used his job experience as a software engineer to develop LcTools, a light curve display and signal analysis toolset designed specifically for the Planet Hunters community. Al is also a researcher on the HEK team “The Hunt for Exomoons with Kepler” whose goal is to determine the occurrence rate of exomoons. Al has co-authored many published research papers in association with Planet Hunters and the HEK project. We thought that it would be of interest to other fellow Planet Hunters members to learn more about LcTools and how Al is able to pursue his passion as a citizen scientist.

You can learn more about LcTools on his website:
https://sites.google.com/a/lctools.net/lctools/.
More Information on the HEK project can be viewed here:
http://hek.astro.columbia.edu/index.html
————————

PH: Would you tell us a bit about your background?
AS: Career wise, I was a software engineer for 35 years developing applications in various engineering fields including computer diagnostics, computer aided design (integrated circuits and printed circuit boards), and medical software (heart pacemakers and defibrillators). In 2010, I retired early in part to pursue science on an amateur basis.

PH: When did you first become interested in Astronomy?
AS: I grew up in the 1950s and 1960s closely following our manned space program which I found extremely exciting. Planetary science became more important starting in the mid-1970s with the Viking missions to Mars. My interest in planetary science continued to grow with the Galileo and Cassini missions. As I approached retirement, I knew that I wanted to contribute to the world of planetary science in a meaningful way.

PH: Is this why you joined Planet Hunters?
AS: Yes. I joined in April 2011 a few months after the website became fully operational. Over the next couple of months, I spent a great deal of time classifying stars and identifying transit candidates. This was a big learning period for me since I didn’t have any prior experience in this area.

PH: How did you become involved with the HEK project and the search for exomoons?
AS: In June 2011, Gerald Green started a thread in the PH science forum for discussing potential moon and ring signals seen in Kepler lightcurves. I joined the discussion and quickly decided that exomoon research would be my new focus area. At about the same time, I read a research paper by David Kipping which showed model exomoon signals based on his LUNA algorithm. Armed with this knowledge, I performed my own visual exomoon survey for several hundred KOIs and then sent him the results. A few months later, David asked me to join his new research project called HEK – The Hunt for Exomoons with Kepler.

PH: Was your work on the HEK project related to your development of LcTools?
AS: Very much so. LcTools was born out of necessity. I needed a software tool to perform large-scale visual surveys of Kepler lightcurves in a fast and efficient manner with the ability to record candidate signals of any type. In early 2012, I developed an application called LcViewer to accomplish this. LcViewer formed the basis for a much larger system of applications called LcTools developed over the next six years.

PH: What are the other applications in LcTools?
AS: In addition to LcViewer, there are five other major applications. LcSignalFinder automatically detects and records periodic signals found in a set of lightcurve files. LcGenerator builds lightcurve files in bulk for use by LcViewer and LcSignalFinder. LcReporter generates an Excel spreadsheet showing all the user defined signals recorded by LcViewer. The last two applications in the system are LcStacker and LcStackAnalyzer.
LcTools is described in detail on my website. The website also includes links to Kepler and K2 lightcurves designed to work with LcViewer and LcSignalFinder. Over 200,000 files are available for the Kepler project and about 350,000 files for the K2 project.

PH: Can LcTools be used by other individuals?
AS: Indeed it can. Initially I built the system for myself but I quickly realized that it could be extremely useful to other serious researchers especially those with a strong science, technology, or astronomy background (LcTools is not designed for entry level users). Currently, I have 63 registered users spanning the citizen science, academic, and professional domains.

PH: What are some of the notable highlights of LcTools?
AS: First and foremost, the system is designed to be fast and easy to use. Operation is simplified wherever possible. The system is optimized for high volume processing of lightcurves.
Second, the system supports signals of any type whether astrophysical in origin or not. Signals may be periodic, quasi-periodic, or non-periodic. This permits a wide range of phenomena to be studied.
Third, signals can be imported into LcViewer and LcSignalFinder from various external sources when a lightcurve file is loaded. For example, project based signals such as KOIs, K2OIs, and TCEs can be imported from the NASA Exoplanet Archive. Signals can also be imported from public signal libraries designed to be shared between individuals or groups across the network via shared Google Drive folders. Use of public signal libraries opens the door to collaborative research projects. Fourth, the system supports a comprehensive set of high-level features typically found in professional lightcurve analysis packages. Major features include detrending of lightcurves, automatic detection of periodic signals, and phase folding of periodic signals.

PH: What new features are planned for LcTools?
AS: The most important upcoming feature is support for the TESS project. My goal is to have a product ready for customers shortly after MAST releases the first batch of lightcurves to the public hopefully sometime in November or December. The high volume capabilities of LcTools will be essential for handling the large number of lightcurves expected.

PH: You are listed as co-author on a number of research papers. Which one do you consider most significant and why?
AS: The most significant would be the last HEK paper published a year ago. In it, we mention a strong exomoon candidate dubbed KOI-1625b I. Over the past eight months, David Kipping and Alex Teachey have been very busy vetting the candidate (I have not been part of this effort since it’s well outside my field of expertise). If the candidate can pass all of the vetting tests, then we will have discovered the first confirmed exomoon. Such a discovery would usher in a new era of research, similar to what the first confirmed exoplanet did back in the mid-1990s.

PH: What advice would you give veteran PH citizen scientists moving forward?
AS: Don’t be afraid to investigate new phenomena! Kepler and K2 lightcurves may be host to a wide variety of intriguing phenomena such as moons, rings, trojans, and comets. By no means has everything been found! There are important discoveries still to be made if you’re willing to search.
————————
Thank you Al for discussing your personal involvement with research in the field of Planetary Science.  We are excited to see what the new release of LcTools will entail, and hope that your experience in this field will also inspire other citizen scientists.

The Launch of TESS and Planet Hunters!

Congratulations to the NASA TESS team for a successful launch! This is an exciting new start for transiting exoplanet discoveries and it also signals a new start for Planet Hunters! We are looking forward to showing TESS data on our site in the coming months.

You may have noticed that things have been quiet on the Planet Hunter site recently. The team of postdocs and grad students working on Planet Hunters have inevitably moved on to new positions. However, behind the scenes, we are working on the M dwarf planet occurrence rates based on your classifications. We are working with the Zooniverse team to move Planet Hunters to a more robust new platform. And we have reached out to several of our citizen scientists for ideas about how to move forward with Planet Hunters. This summer, Rebekah and Jennifer Kahn will be working on Planet Hunters at Yale. They will be setting up a site with light curve fitting tools developed by and for Planet Hunters and preparing for the TESS data.

Some interesting statistics about Planet Hunters:

  • We have had more than 500,000 volunteers on our site. These citizen scientists have classified millions of light curves, contributing a cumulative total of almost 200 years (the 24/7 classification time for a single person working 200 years non-stop).
  • Planet Hunters has been supported by Yale University, grants from NASA, and gifts in memory of Jerry Green. We are working on a new grant proposal to NASA to support a postdoctoral fellow who will provide strong leadership on the Planet Hunter site.
  • Two of our citizen scientists (Kian Jek and Daryll LaCourse) were awarded the Chambliss prize for amateur astronomy from the American Astronomical Society.
  • One PhD thesis (by Joey Schmidt) was based on Planet Hunters.

Watch this space – we’re excited about the new changes ahead!

“Without Planet Hunters, none of the subsequent discoveries would have been possible.”

An interview with PH Tom Jacobs, by Rebekah and Jennifer Kahn

Thomas Lee Jacobs is a long-time Planet Hunters member who recently coauthored “Likely Transiting Exocomets Detected by Kepler,” a paper in which the first exocomets were discovered by the transit method through his persevering efforts in reviewing over 200,000 light curves.  Published in Monthly Notices of the Royal Astronomical Society, you can read that paper here: https://arxiv.org/pdf/1708.06069v2 . This is not Tom’s first scholarly paper, having previously been listed as coauthor of nine other papers, in which he explored eclipsing binaries, long period exoplanet orbits, and Jupiter size exoplanets in the Habitable Zone. And he tells us “there are more in the works.”  With such a record of scholarly accomplishments as a citizen scientist, we thought his views of the past, present and future of PH would be worth listening to.  And yes, he is a real citizen scientist; having graduated with a non-science degree from the University of Washington in Business Administration, his rewarding day job is working as an employment consultant for workers with intellectual disabilities.

PH: Could you tell us what attracted you to Planet Hunters when it was founded seven years ago?  Were you already an amateur astronomer?  Had you already been involved in exoplanets, and what other astronomy interests did you have then or now?

TJ: I originally was drawn to citizen science projects created by the Zooniverse Citizen Science Alliance at MoonZoo and moved over to Planet Hunters when it was launched in December of 2010. The idea of looking for planets outside of our solar system when there was only a handful of known exoplanet discoveries at the time was intriguing. We all know now that the NASA Kepler space telescope has revolutionized astronomy and astrophysics, but at the launch of Planet Hunters there were many unknowns. I think back to that period of time as being similar to the “Wild West”, as everything was fresh and uncharted and little was known about what we would find together as Planet Hunters members. For me, I started at ground zero with no background in astronomy and my college major was in business not science.

PH: What has been your experience with Planet Hunters, then and now?

TJ: As mentioned, I became a member of Planet Hunters around 2010 and attended the first Kepler Science Conference in 2011. At Planet Hunters “Talk” I began learning from other members with more experience and insight into the light curves. Kian Jek (kianjin) was one of the most respected members at the time. There were many stalwart surveyors and contributors and I list only a few- Gerald Green, Hans Martin Schwengeler, Daryll LaCourse, Alan Schmitt, Troy Winarski, Mark Omohundro, Johann Sejpka, Ivan Terentev and Robert Gagliano. What they all have in common is dedication, perseverance and a great love for finding new and unusual events in the light curves. Kian, Daryll and I attended the first Kepler Science Conference in 2011. At that time, Planet Hunters was very novel to the astronomical community. Non-science folks, making meaningful discoveries by visual survey of the Kepler data, still had a ways to go to being acceptable in science papers. Of course, this has all changed as we fast forward to today and Planet Hunters has made significant discoveries. It is safe to say that without Planet Hunters coming on to the scene, some of the more unusual astrophysical discoveries would still remain dormant in the Kepler data. Just think of Boyajian’s star, KIC 8462852.

If you do not have an advanced mathematical and science background do not worry. I do not have one either and can only perform the most basic analysis of the Kepler light curves. What I do have is the treasure hunter zeal and a practiced eye that lends well for surveying and looking for unusual patterns in the data. Currently, I survey the Kepler K2 data using Alan Schmitt’s LcTools light curve viewer and work in collaboration with Daryll and two veteran astronomers, Saul Rappaport and Andrew Vanderburg. Daryll and I perform the initial identification and screening and Saul and Andrew do all the heavy lifting (analysis).  I have since been a coauthor on 10 Kepler science papers with more in the works.

PH: What were some of the early obstacles that PH had to overcome?

TJ: I think you both will agree that the original concept and design for Planet Hunters using crowd-sourcing techniques to identify interesting events quickly became obsolete. Some obstacles for analysis were not having access to the real KIC nomenclature, access to the Kepler data and having a fast, high resolution light curve viewer showing the entire observation period. This resulted in an independent subsystem of light curve analysis and sharing in the Planet Hunters “Talk” section.

PH: Well, we can remember that, at the time, things were moving along rather rapidly and everyone in the exoplanet community was learning on the fly.

TJ: One has to also acknowledge that in 2010 this was all new territory and the learning curve evolved over time. Without Planet Hunters, none of the subsequent discoveries would have been possible.

PH: And individual Planet Hunters not only made these discoveries, but also developed the analytical tools that enabled them.  Can you tell us about that?

TJ: Yes. As you know, Alan Schmitt’s LcTools program was created to address the shortfall I mentioned of not having a fast, high resolution light curve viewer.  His programs now provide a complete set of analytical tools. One can quickly scan individual light curves in ten seconds or less (actually an almost instantaneous scrolling feature) with excellent light curve resolution.

This year, I generated the Kepler DR25 long cadence light curves and they are available on his site, linked to my Gmail Google Drive as zip files for the LcTools viewer.

https://sites.google.com/a/lctools.net/lctools/data-sources/kepler-lightcurve-directories

PH: Well, we hope to interview Mr. Schmitt for PH in the future and learn more from his perspective also.  Now, you have been a significant force in making many PH discoveries.   What particular outlook do you bring to the search for other worlds and how does this align with the PH mission and exoplanetary discovery as a whole?

TJ: I would consider myself more of a Kepler pattern recognition treasure hunter veteran and an individual who can perform only the most basic light curve analysis. I leave the heavy lifting to the skilled veterans.

PH: But you have been a coauthor on several important papers and part of so many exoplanet discoveries.  Surely there is a bit more to it?

TJ: There are some tools available online for a more detailed look and many planet hunters are adept in doing so. I am not one of them. What I have found is over the course of many years one can develop an eye for what is an interesting event and what may be simply noise or artifacts in the light curves. Though periodicity is a key tell for real astrophysical events, machine searches are well suited to beat the trained citizen scientist making visual surveys. However, single (less so now), aperiodic and new light curve patterns of real astrophysical events give the visual surveyor a real edge in this area.

PH: So, even in these new days of neural networks and machine ‘deep learning’ that characterize light curves with great accuracy, there is still a place for citizen scientists and Planet Hunters?

TJ: A machine will only find known patterns. The visual surveyor travels into uncharted areas finding new and unusual events.

PH: Such as your recent exocomets find, for sure!  Well, what is your process for finding and analyzing light curves and what resources do you use?

TJ: When I survey a light curve, the first thing I do is look for unusual or known light curve patterns. Depending on how they appear will give the surveyor an idea if the events are real, the star owns the events, if there are third body events and/or if there is contamination. The next thing to check is the actual FOV. PanSTARRS is relatively new site though there are others:

http://ps1images.stsci.edu/cgi-bin/ps1cutouts

http://cdsportal.u-strasbg.fr/?target=16%2007%2013.97%20-17%2002%2041.7

http://wsa.roe.ac.uk:8080/wsa/DBLogin

http://skyserver.sdss.org/dr10/en/tools/chart/chartinfo.aspx

I will not list all the K2 and Kepler main field online archives search sites as they are well known. The IRSA/WISE site is also a great resource of looking for WISE band 4 IR that is a great tell for “Dippers.”  Of course, Andrew Vanderburg’s site is a must see for K2. He has a page for each K2 light curve that shows background contamination such as BGEBs:

https://www.cfa.harvard.edu/~avanderb/k2.html

PH: What future projects do you think PH should pursue? And what are some suggestions for improvement?

TJ: I would be interested in learning more about how Planet Hunters will be working with the new TESS data when it becomes operational later this year (hopefully).   Educating and training its members to work more independently and developing close relationships with veteran science team members with timely feedback would be of significant help.  There will be quite a bit of excellent data to analyze and citizen scientists will need strong advocates in the professional astronomical community to ensure the data is accessible to the public similar to the Kepler data, though I have been told that the data will be accessible similar to K2.

PH: Can you point to any particular discoveries or experiences over the last seven years that you particularly enjoyed or are especially proud of?

In January of last year, I took on a very large project of downloading and visually surveying all 201,250 light curves of the Kepler prime-field stars in Ames Data Release 25. Alan Schmitt and I collaborated in downloading the stars. This was a dream that I had envisioned while surveying at Planet Hunters. What until January was not in place to do this was the technology, team, experience and time. The survey took five months and I kind of went off the charts devoting most of my free time to visually surveying before and after my day job working as a Special Projects manager for AtWork! in Bellevue, Washington helping people with intellectual disabilities find paid employment in their community. I have been doing this rewarding work for over 21 years. The visual survey was completed in May and a rich harvest of interesting finds was discovered. The discovery that stands out and is likely my high-water mark for surveying is the exocomet paper recently published last fall. These are the first exocomet candidates ever discovered using transit photometry. Without the team effort, the comets would still be lurking in the Kepler data. That is the power of visually surveying, team effort and a love of finding new and usual things in the light curves. Thank you Planet Hunters and Happy Hunting!

Thank you, Tom.  We appreciate your work, explanation of your outlook and methods, and recommendations for the future. In particular, we hope that your thoughts might stimulate some further discussion on this blog.  Reminiscences of our successful past are welcome, but practical suggestions for our future would be truly exciting.

It all began with Planet Hunters

Here is a great Planet Hunters story from Rebekah and Jennifer Kahn.

My sister and I are spending an entire week listening to and speaking with some of the top researchers of exoplanets. There, among the names of such renowned scientists as Batalha, Borucki, and Charbonneau from NASA and large universities, are Jennifer and Rebekah Kahn, undergraduates from small, all-women’s Smith College – registered participants! And as we take part in the international Kepler & K2 Science Conference, we think about how we got here and know that it all began with Planet Hunters.

Twin sisters born in China, we came to America when we were adopted at one year old, growing up on our eastern Connecticut farm, loving baseball, decorating the Revolutionary War graves just beyond our stone walls, and learning the constellations so brightly visible in our beautifully dark night sky. We were normal, healthy kids, except for our teeth. We each had two major dental operations in our very first years’ home and probably hold a world’s record in orthodontics, wearing braces from age 8 to age 17. All this required very frequent trips to specialized dentists in New Haven and Yale. Our dad, trying to make those visits educational if not enjoyable, each time took us to another Yale museum, library, or exhibit. The planetarium and observatory were our favorites (or second favorites, next to the collection of harpsichords that we were actually allowed to play). We became regulars there, looking through the telescopes, seeing each new show and exhibit, and gratefully receiving gift books from Heidi, the administrator.

It was a cold, clear January night in 2011 when the Yale astronomer assisting in observing asked us if we would be interested in becoming part of a new research project called Planet Hunters. A research project? Open to kids? We were ready the moment he asked. The chance to do “real” science and not just study it was exactly what we wanted – but of course, as we learned, first we had to do a bit more studying. You see, at age 14, like so many other people, we had never heard of exoplanets. While we had read science fiction stories, we did not know that 51 Pegasi B had made them a reality. So, Planet Hunters taught us about transits and light curves, and that led to transit depths, which then led to M dwarfs and the different star types, which in turn led to the Hertzsprung-Russell diagram, and then the effects of starspots and even eclipsing binaries. Taking part in Planet Hunters was not just our first chance to be “real” scientists (who were convinced that we would be the first to find another Earth), but also an immensely instructive project that made our education as painlessly distracting as our father had hoped our Yale visits would be. While we were too shy to participate in the on-line discussions, we read them avidly and learned much. Two years went by and, as home-schooled high schoolers still entranced by exoplanets, we were accepted into a distance learning “Computational Astrophysics” course from Dr. Laura Trouille (now a co-PI of Zooniverse) of Northwestern University, which published our term project Towards Eta sub Earth. Then as college freshman we spent the summer working on the Wesleyan Transiting Exoplanet Project for Prof. Seth Redfield, resulting in a paper on exoplanet light curves from white dwarfs, published by the Keck Astronomy Consortium.

And now, as undergraduate sophomores, here we are at NASA Ames Research Center. Jennifer is working with Dr. Jack Lissauer on discovering how varying the eccentricity of uniformly-spaced earth-sized planets in a Hamiltonian system affects the long-term stability of a planetary system, using the symplectic integrator REBOUND.  The aim is to examine the nature of planetary system formation over long periods of time.  Rebekah is working with Dr. Mark Marley looking at simulated data sets of exoplanet brightness to be obtained by the WFIRST Space Telescope with filter photometry; analyzing the brightness of each planet, and determining how much can be learned from photometry without spectra. The goal is to enable successful exoplanet characterization without a spectrometer flying on WFIRST, due to budget constraints.  We are both exercising our programming knowledge at the moment, modeling the processes and then varying the inputs to better understand the results.  We will be developing posters for later presentation and possibly short papers.  It is challenging and interesting work and we are doing a lot of late night reading to make sure we get it right.

Back at the conference we note that there are a significant number of talks discussing the pipeline and processing of Kepler data. Basic difficulties of SNR and PSF have led to applying advanced methods such as MCMC and ROBOVET. Yet all of these are simply designed to improve the extraction of light curves with less error; all are attempting to decide whether the data indicates an exoplanet or an artifact. That is exactly what we were, and are, all trying to do at Planet Hunters.
If imitation is the sincerest form of flattery, then the talk by Prof. Ian Crossfield on crowd-sourcing K2 data interpretation through his “Exoplanet Explorers” project is very high praise for Planet Hunters, which it so closely resembles. While we ourselves have not been active Hunters for a while, we are proud to be part of a project which has enabled citizens to make important discoveries with published papers, two Chambliss Award winners (we haven’t run into Daryll LaCourse who is supposed to be at this conference), and even gained some popular fame (or perhaps notoriety) through the possibility of aliens revealed in Tabby’s Star.

To be honest, we are not “natural” STEM scholars and sometimes think we should be pursuing our harpsichord studies rather than exoplanet research. We struggle with the concepts and work long hours to make clear our research goals, but the importance of the quest outweighs our challenges in pursuing it. While we didn’t discover Earth 2.0 when we were 14, we truly believe that we will be part of that discovery in our lifetime. And, for us, it all began with Planet Hunters.

Planet Hunter Jerry Green

Dear Planet Hunters,

I am sorry to report that Gerald Green passed away on Wednesday Aug 16th. He was an active contributor to the Planet Hunter project and a co-author on two key papers (Boyajian et al. 2016, Wang et al. 2015). Our thoughts and condolences go to his wife, Barbara, and to his family.

For those who knew Jerry, I have pasted his obituary below, written by his youngest son.

Gerald Richard Green, 66, passed away on August 16, 2017. Survived by wife Barbara, sons Will (Patty), Steven (Sara) and Tom; grandsons Toby, Cormick and Sam; brothers Ray Green and Michael Green (Donna); brother in-law Richard Weiss (Patricia Davis) and sister in-law Giudi Weiss.

He married his high school sweetheart and loved her for 50 years. He gave Barbara everything good and beautiful in her life, including their children, their home, and a love of plants and animals; key deer and Key West. For her 50th birthday, he gave her butterflies that have maintained a presence in their lovely yard for the last 16 years.

He took care of the people he loved, and he taught his family that you don’t just tell the people you love that you love them; you show them. He taught them not to be afraid and to follow their dreams.

Jerry told his boys that if they found something they love to do, they would never work a day in their lives. Will became a software architect; Steven, an ecologist and wetland scientist; and Tom an award-winning sports journalist

He was devoted to his three boys, encouraging them in everything they pursued. He nurtured their curiosities and cultivated their passions. He taught them all to sail and drove them all over the country for regattas, and he never missed a basketball game. He bought one of the first home computers, a TRS-80, when Will was born, and he was determined to make sure he knew how to use it. He gave Steven his love of the outdoors, plants and wildlife. He took baby Tom to his advertising office and took care of his “Itty Bitty Buddy” there.

A loving grandfather to his three grandsons, Jerry sent them science kits, flew balsa wood planes with them, did armpit farts and taught them about trains.

He was a true renaissance man. Jerry taught himself the nuances of countless topics and skills. He was a sailor, a pilot, a flyfisher, a musician, an astronomer, a computer genius, an award-winning advertiser, an antique car collector, a botanist and a wildlife expert.

A past Commodore of the Coconut Grove Sailing Club in 1994, he also ran the club’s sailing program. He taught his children and many others to sail, instilling in them confidence, independence and judgment. As Rear Commodore in 1992, he helped bring CGSC through the aftermath of Hurricane Andrew; during the cleanup, he was elbow-deep in the seaweed that had filled the club’s toilets.

He sailed Biscayne Bay with his family on their 30-foot Catalina, Advocation. He skippered them to The Bahamas and single-handedly sailed Advocation from Miami to Key Largo, just to know he could do it.

After earning a degree from the University of Florida School of Journalism and Communications, Jerry began his career in advertising as a copywriter and won several ADDY Awards. He then taught himself all about computers and began his second career as a computer consultant, a venture that included support for the Ryan White Program in Miami-Dade County, which helped improve the lives of more than 10,000 people with HIV/AIDS every year.

In the mid 1980s, Jerry earned his pilot’s license. In his Beechcraft Musketeer, he flew his family to The Bahamas, the Keys, and the Everglades Seafood Festival.

A citizen scientist for the Planet Hunters project, he coauthored more than a dozen published scientific papers, including the two most important papers to come from that endeavor.

He was a civic activist and served eight years on the Coral Gables Board of Adjustment; he was instrumental in getting city ordinances passed that improved the quality of living in the Gables.

Steadfast in his beliefs, he was an avid critic of politicians whose policies he found cruel and uncaring. He hated bullies and never punched down.

A man of few words but many (silly) faces, Jerry’s dry wit, sarcasm and love of corny jokes and puns highlighted his rich sense of humor, which he passed down to his sons.

A fighter until the very end, he adopted the motto, “Never give up! Never surrender!”

How old could alien civilizations be?

Guest post by Sarah Pearson, Columbia Astronomy Graduate student and creator of the Space with Sarah YouTube channel (www.youtube.com/spacewithsarah). Today Sarah is describing her latest YouTube episode.

Within the last couple of decades, humans have detected thousands of planets around stars other than our own Sun (exoplanets). The enormous number of galaxies each with billions of stars which statistically all have a planet orbiting them, makes it weird to think that life here on Earth should be the only life that exists in the entire Universe.

A question which hasn’t received that much attention yet is: how old could the oldest planetary system be?

We know that our own solar system is roughly 4.6 billion years old, which is actually quite young compared to the whole Universe which is ~13.8 billion years old. The Big Bang, mostly produced Hydrogen and Helium, while Earth’s crust consists mostly of oxygen, silicon and iron. This means Earth couldn’t have formed right after the Big Bang. But for how long would we need to wait?

To create the elements that rocky planets like Earth consist of, stars in the Universe actually need to first be created and then die to spread elements heavier than Hydrogen and Helium into space. Heavier elements are mostly produced in stellar interiors through fusion and when the stars eventually explode and shed their layers to their surroundings. It takes hundreds of thousands of years for the stars’ material to fully mix into nearby space, and subsequently this material needs to collapse and form new stars and planets.

While there’s definitely an observed correlation between the amount of time passed since the Big Bang and the amount of heavier elements in the Universe, astronomers are still having a hard time creating a precise timeline for the amount of heavy elements created at what time. But we do know that something like Earth could not have formed until enough stars in the Universe had exploded, and we also know that this could have happened a lot earlier than when our own solar system formed.

One of the most interesting planetary systems astronomers have found in our own Galaxy is Kepler-444 (Campante et al. 2015, ApJ) which consists of five rocky planets orbiting a star which is 6.6 billions years older than our own solar system, meaning that it formed only 2.6 billion years after the Big Bang! While this system probably doesn’t harbor life (the planets are too close to their star to have liquid water), its existence demonstrates that planetary systems could have formed a lot earlier in the history of the Universe than our solar system. This begs the question: how intelligent would alien civilization be if they have evolved for billions of years longer than life here on earth?

Find out more about this topic in the newest Space with Sarah’s YouTube episode: https://www.youtube.com/watch?v=uq14s5-FKhc

On the Space with Sarah YouTube channel (www.youtube.com/spacewithsarah), astrophysicist Sarah Pearson answers frequently asked space related questions in 3-6 minute videos.

New Candidates from K2 from Planet Hunters and Their Nearest Neighbors

By Yale grad student, Joey Schmitt

In the 10th paper(!) from the Planet Hunters citizen science program, a stupendously great number, we independently discovered 10 new planet candidates in the K2 *Kepler* data (Campaigns 1 and 3). However, simply discovering them was not the main goal of the new paper. We wanted to explore their neighborhoods.

The environment in which a star is created has a large and enduring impact on how planets form. Under standard planet formation theory, when a star collapses, it forms a disk, called a protoplanetary disk, due to the conservation of angular momentum. It is in this disk of material orbiting the infant star that planets are formed. Solid material clumps together and forms planets. In the inner disk, the material is hotter, so the only solid material is metallic or rocky. In the outer disk, the material is cooler, which allows molecules like ice and frozen ammonia to clump together as well. This extra solid mass in the outer solar system allows the outer planet to grow bigger and eventually capture gas. Interactions between all these planets can then jumble them around.

However, most stars are not born alone. They more often come in pairs or triplets or even larger clusters. If two stars are forming too close together, each star could disrupt or even completely destroy the other’s
protoplanetary disk, making one or both stars devoid of planets. Conversely, it’s at least hypothetically possible that, at certain distances, a star could funnel its protoplanetary disk material into the protoplanetary disk of a neighboring star, giving the star more material to make planets out of. Current research has suggested that the destructive effect dominates. We aimed to test this suggestion and to further examine the potential effects of stellar neighbors to planetary systems. There are similarly interesting questions exploring the effect of a third star in eclipsing binary (EB) systems.

In this paper, we made a selection of many planet candidates, several from Planet Hunters and several others from previously published journal articles, and also many EB candidates, all of which were discovered through Planet Hunters volunteers, for a total of 75 targets. In order to find nearby stellar companions to these planet or EB systems, one has to take very high resolution images. Typically, this is impossible due to atmospheric turbulence blurring the starlight (seeing). To get around this,
we used two telescopes, SOAR in Chile and Keck in Hawaii, that get around this problem. The SOAR telescope uses speckle imaging, which takes hundreds images so quickly that the air doesn’t have time to move around and blur the image and then combines them. The Keck telescope, on the other hand, uses lasers to measure the air turbulence and then deforms its mirrors many times per second to correct the light before it reaches the camera.

With these techniques, we were able to find three stellar companions to our planet-host stars and six companions to our EBs. While we did not have a large enough set of targets to definitively measure the overall effect of nearby neighbors on planetary and EB formation, the results were suggestive
of two things. First, we found just one very close companion to a planet-host, strengthening the hypothesis that nearby stars are in fact destructive to planet formation. Secondly, we discovered several new stars
near very short-period EBs, implying that the shortest period EBs necessarily need a third star in the system. The third star steals energy from the close pair, which pushes those two stars on a shorter and shorter orbit.

The six companion stars found by the SOAR telescope are shown in the image below:

image

In the meantime, we are continuing to show data from the original *Kepler* set of stars. This current project will allow us to calculate the frequency of planets in long-period orbits around *Kepler *stars, something
that no other research project is yet capable of doing. An integral part of this is displaying synthetic (or “fake”) planets in the data. The synthetic transits allow us to measure how good Planet Hunters are at
finding planets of different sizes and periods around different kinds of stars. This knowledge is *required* to know how frequent planets occur because it allows us to correct for the planets that are there but *not*
found.

We would like to thank everyone involved in this program! The volunteers here at Planet Hunters are simply wonderful. This is one of the most popular *and scientifically productive* of the Zooniverse projects. We’re
also looking into if and how we can reincorporate K2 data and, in the future, TESS data. We hope that you continue to contribute to astronomical research.

The (not *quite* final) public version of this paper is here.
.

Tabby’s Star

In February 2016, Tabby Boyajian gave a fabulous TED talk on Planet Hunters and the mysterious star KIC 8462852 (a.k.a. “Tabby’s star”). Check her out on this YouTube video, released in April 2016.

Chambliss Amateur Achievement Award

Please join me in congratulating one of our prolific Planet Hunters, Daryll LaCourse (aka Nighthawk Black), who received the Chambliss Prize for Amateur Astronomy. Woo-hoo! The award was announced at the American Association of Astronomy meeting on January 6th 2016.

Daryll is the second Planet Hunter to receive the Chambliss Amateur Achievement award, which goes to a person not employed in the field of astronomy in a professional capacity, who is resident in North America. The key factor in judging nominations is that the work contributes to the advancement of the science of astronomy.

The citation reads: Daryll LaCourse is a dedicated and talented amateur astronomer who has made significant contributions to exoplanet research as a leading member of the Zooniverse Planet Hunters program. Through painstaking examination and independent reanalysis of Kepler data, he has discovered several new exoplanet candidates, more than 100 previously unknown eclipsing binary systems, and other notable, enigmatic variable stars. He is an energetic and productive collaborator with many professional astronomers. He has coauthored several scientific publications and was lead author on a paper with more than a dozen professional astronomers as co-authors. To quote from one of his letters of support, “If Daryll were a professional astronomer, I would be impressed by the quantity, quality, and creative insight of his work. He is an extraordinary citizen scientist — and highly deserving of the Chambliss award for scientific contributions from amateur astronomers.”