Archive by Author | The Zooniverse

Gwiazdy podwójne zaćmieniowe a tranzyty

Observing at Keck, Christmas Eve 2010.

Jest wigilia, a ja właśnie rozpoczynam pięciogodzinną obserwację teleskopem Kecka przy wykorzystaniu spektrografu o dużej rozdzielczości (HIRES) w poszukiwaniu planet pozasłonecznych. Na zdjęciu widać, jak za pośrednictwem systemu Polycom łączę się z operatorem teleskopu, Terry’m, który znajduje się na szczycie wulkanu Mauna Kea, na wysokości 4207 metrów. Ponieważ powietrze jest tam bardzo rozrzedzone, Terry musi korzystać ze zbiornika z tlenem. Cieszę się, że w centralnym biurze teleskopu Kecka w Waimea panują komfortowe warunki pracy.

Dziś w nocy będę mierzyć predkość gwiazd, wykorzystując metodę Dopplera. Orbitujące planety powodują ruch gwiazdy wokół wspólnego centrum masy. Prędkość ta jest największa w przypadku masywnych planet.

Kiedy małe gwiazdy przesłaniają większe gwiazdy, spadek jasności może być praktycznie taki sam jak w przypadku tranzytu gazowych planet olbrzymów. Aby móc potwierdzić, że kandydatka faktycznie jest planetą, potrzebne są pomiary metodą Dopplera, określające masę obiektu. Zespół Keplera prowadzi zmasowane kampanie weryfikacyjne (kierowane przez dr Geoffa Marcy’ego z UC Berkeley) przy użyciu takiej samej technologii, z jakiej korzystam w tej chwili. Dr Natalie Batalha (zastępca kierownika projektu Kepler) mówi, że dla jej zespołu ogromne znaczenie ma pomoc innych osób oraz udział poszukiwaczy planet w przeczesywaniu danych. Niedługo na blogu pojawi się wpis dr Batalhy!

Niektórzy z Was pytali, ile następujących po sobie niżej położonych punktów powinno być widocznych podczas tranzytu. To zależy od odległości planety od gwiazdy. Planety położone bliżej orbitują szybciej i ich tranzyty trwają tylko kilka godzin, natomiast planety bardziej odległe potrzebują do dokonania tranzytu więcej czasu. Powinniście szukać więcej niż jednego takiego niżej położonego punktu. Ponieważ pomiary jasności dokonywane są co 30 minut, tranzyt trwający 3 godziny będzie się składał z jedynie 6 niżej leżących punktów. Jednak punkt wejścia, czyli pierwszy punkt tranzytu, może być przejściowy i nie dochodzić do najniższego poziomu tranzytu. Podobnie jak punkt wyjścia, czyli ostatni punkt tranzytu.

Krzywe blasku podwójnych gwiazd zaćmieniowych są naprawdę niezywkłe – przypominają mi rysunki, które jako dziecko wykonywałam, bawiąc się spirografem. Kilku użytkowników Planet Hunters nazwało to “efektem migawki”. Aby zademonstrować proces powstawania wykresu, stworzyłam prosty program. Na ilustracji poniżej przedstawiłam przykładową krzywą blasku dla podwójnych gwiazd zaćmieniowych w układzie kontaktowym o okresie orbitalnym wynoszącym 6 godzin. Jeśli co kilka minut będziemy zapisywać dane z obserwacji tych gwiazd, krzywa blasku będzie przypominać sinusoidę. Jeśli jednak będziemy dokonywać obserwacji rzadziej (na niskiej “szybkości migawki”), uzyskamy dość interesujące obrazy. Wykres po prawej przedstawia krzywą blasku uzyskaną w wyniku wykorzystania techniki podpróbkowania w okresie 30 dni. Otrzymany wykres jest podobny do krzywych blasku podwójnych gwiazd zaćmieniowych, które napotykacie w danych z teleskopu Keplera.

shutter-both

Eclipsing binaries vs transits

Observing at Keck, Christmas Eve 2010.

It’s Christmas Eve and I’m starting a five-night observing run at the Keck Telescope using a high-resolution spectrograph (HIRES) to search for exoplanets. In the photo here, I am communicating with the telescope operator, Terry, by polycom. He is on the summit of Mauna Kea at 14,000 ft where the air is thin and I see that he has oxygen flowing. I’m glad that I’m working in comfort at Keck HQ in Waimea.

Tonight, I’m using the Doppler technique to measure the velocities of stars.  Orbiting planets tug their host stars around a common center of mass.  This reflex stellar velocity is largest for massive planets.

When small stars eclipse larger stars, the brightness dip can be virtually the same as those for transiting gas giant planets. To confirm a transit candidate as a planet, Doppler measurements are needed to determine the mass of the transiting object. The Kepler team has a massive follow-up campaign (led by Dr. Geoff Marcy at UC Berkeley) using the same setup that I’m using now.  Dr. Natalie Batalha (Deputy Scientist for the Kepler project) explains that the team is also eager to have others helping and to have Planet Hunters combing through the data. Watch for a blog post by Dr. Batalha here soon!

Some of you have asked how many consecutive low points you should see during a transit. That depends on how close the planet is to the star. Close planets orbit faster and transit in a few hours while more distant planets take several hours to transit. You should look for more than one low point.  Since the brightness measurements are taken every 30 minutes, a 3 hour transit would consist of just 6 low points. However the ingress, or first transit point, might be transitional and not reach the transit floor. Ditto for the egress, or last transit point).

The light curves for eclipsing binary stars are quite spectacular – they remind me of sketches I used to make with a “spirograph” toy I had as a kid. Some of the planet hunters have called this a shutter effect and I’ve written a quick program to demonstrate what is happening. In the Figure below, I created a theoretical light curve for a contact eclipsing binary with an orbital period of just 6 hours. If we had observations of this star every few minutes, then the light curve would look similar to a sine wave (left plot). However, if we observe this star less frequently (a slow “shutter speed”), then some interesting patterns emerge. The plot on the right in the Figure below shows an under-sampling of the light curve over 30 days. The pattern is similar to what appears in some of the eclipsing binary curves you are finding in the Kepler data.

shutter-both

Gwiazdy podwójne zaćmieniowe

Figure 1. Eclipsing Binary (detached, Algol type)

Nazywam się Debra Fischer i jestem profesorem astronomii na Uniwersytecie Yale. Wielu z Was odkryło już wspaniałe wykresy krzywych blasku gwiazd podwójnych zaćmieniowych, dlatego chcielibyśmy Wam dostarczyć nieco więcej informacji na ten temat. Przedstawione przykłady to odkrycia, które dzięki Wam znalazły się w naszych zbiorach. Więcej takich przykładów można znaleźć w pracy zespołu Keplera (Prsá i in., 2010 http://arxiv.org/abs/1006.2815).

Krzywe blasku uzyskane dzięki teleskoppowi Keplera pokazują zmiany jasności gwiazdy w czasie. Ilustracja 1 powyżej (APH10135736 = KID 6449358) przedstawia dwie gwiazdy orbitujące wokół siebie. Podobnie jak w przypadku planet w tranzycie, każda z tych gwiazd przesuwa się na tle drugiej. Wykres pokazuje poziom jasności gwiazd w czasie (liczonym w dniach). Przez większość czasu blask większej, bardziej gorącej gwiazdy oraz mniejszej, zimniejszej gwiazdy daje wspólną wartość na wykresie. Głęboki spadek jasności (minimum główne) oznacza, że mniejsza gwiazda przesłania większą, odpowiadajacą za większość wspólnego blasku. Z kolei mniejszy spadek (minimum wtórne) oznacza, że większa, bardziej gorąca gwiazda przesłania mniejszą, odpowiadającą za mniejszą część wspólnego blasku. Gwiazdy, których krzywe blasku mają postać płaskich linii poprzedzielanych dość ostrymi spadkami (jak na ilustracji 1) określa się mianem gwiazd podwójnych typu Algola.

Kluczowym elementem wskazującym na obecność gwiazd zaćmieniowych (lub planet w tranzycie) na wykresach krzywych blasku jest powtarzalność.

  • możecie policzyć dni pomiędzy dużymi spadkami na ilustracji 1 i określić okres orbitalny (ok. 5 dni) tego układu podwójengo
  • możecie określić czas mijania się gwiazd na podstawie czasu trwania tranzytu (liczonego na ilustracj 1 w godzinach)
  • możecie być pewni, że gwiazdy mają różne wielkości, jeśli tranzyty na wykresie mają różne głębokości

Zwróćcie uwagę, że głębokość spadków jasności gwiazdy podwójnej podczas zaćmienia może być podobna do głębokości spadków jasności planet w tranzycie. Głębokość ta informuje nas o stosunku wielkości obiektu dokonującego tranzytu (lub zaćmienia) do wielkości gwiazdy, wokół której dany obiekt krąży. Najmniejsze gwiazdy mają średnicę zbliżoną do średnicy Jowisza (gwiazdy mają postac gazową i zwiększona siła grawitacyjna większej gwiazdy powoduje kondensację ich struktury).

Figure 2. Contact eclipsing binary stars

Czasami gwiazdy podwójne znajdują się tak blisko siebie, że ich powierzchnie przybierają kształt elipsy, a krzywa blasku pomiędzy zaćmieniami jest zaokrąglona, tak jak na ilustracji 2 po lewej (APH10039007 = KID 9357275), gdzie okres orbitalny trwa niewiele dłużej niż jeden dzień. Na wykresie tym widać zarówno tranzyty główne, jak i wtórne. Z najdziwniejszymi krzywymi blasku gwiazd podwójnych zaćmieniowych mamy do czynienia, gdy gwiazdy te są jeszcze bardziej do siebie zbliżone – nazywamy to układem ponadkontaktowym. Przykład przedstawiony został na ilustracji 2 po prawej (APH10102932 = KID 4633285). Gwiazdy te znajdują się tak blisko siebie, że mają wspólną otoczkę. Głębokość zaćmienia na krzywej blasku jest zmienna, wykres jest nieregularny, a między gwiazdami może dochodzić do transferu masy.

Eclipsing Binaries

Figure 1.  Eclipsing Binary (detached, Algol type)

Figure 1. Eclipsing Binary (detached, Algol type)

I’m Debra Fischer, a Professor of Astronomy at Yale University. Many of you have already discovered some amazing eclipsing binary light curves, and we wanted to provide you with some information. The Figures here show examples that you have put into collections. Some great additional examples are shown in a paper from the Kepler team (Prsá et al. 2010 http://arxiv.org/abs/1006.2815).

The Kepler light curves show how the brightness of the star changes with time.  In Figure 1 (APH10135736 = KID 6449358) above, there are two stars orbiting each other.  Similar to transiting planets, these stars cross in front of each other. The light curve shows the brightness level of the star, plotted vs time in days.  Most of the time, both the larger, hotter star and the smaller cooler star yield a combined brightness measurement for the light curve. When the deep dip in brightness (the primary minimum) occurs it’s because the smaller cooler star is eclipsing the hotter star, which contributes most of the light; when the smaller dip (secondary minimum) occurs, it’s because the larger hotter star is eclipsing the smaller star, which contributes less light to the combined brightness. Stars with flat regions punctuated by relatively sharp dips (e.g. Figure 1) are known as Algol binaries.

A key indicator of eclipsing (or transiting planet) light curves is repeatability.

  • you can count the number of days between the large dips to determine the orbital period (about 5 days) of this binary star system in Figure 1
  • you can determine how long it takes the stars to cross by the duration of the transit dip (hours for Figure 1)
  • you know that one star is larger than the other if the transits don’t have equal dips

Notice that the depth of the brightness dips for an eclipsing binary star can be similar to those for a transiting planet. The transit depth tells us the ratio of the size of the transiting (or eclipsing) object relative to the size of the primary star and the smallest stars have diameters that are similar to Jupiter (stars are gas and the increased gravity from the larger mass star compresses the structure).

Figure 2. Contact eclipsing binary stars

Figure 2. Contact eclipsing binary stars

Sometimes binary stars are so close that the surfaces are distorted into an elliptical shape and the light curve between the eclipses is rounded, as in the left image of Figure 2 (APH10039007 = KID 9357275), where the orbital period is a little more than one day. You can see both the primary and secondary transit dip in this light curve. The most bizarre eclipsing binary light curves are those where the stars are even closer together, called over-contact binaries. An example of this is shown in the right image of Figure 2 (APH10102932 = KID 4633285). These stars can be so close together that they share a common envelope. The eclipse depth is variable, the light curve looks irregular, and there can be mass transfer between the stars.

Planety w tranzycie

The effects of 3 different types of transiting planets on a Kepler light curve. (Illustration: H. & M. Giguere)

Cześć, mam na imię Matt i jestem doktorantem na Uniwersytecie Yale oraz członkiem Zespołu Naukowego. Jesteśmy pod ogromnym wrażeniem dotychczasowego ruchu na planethunters.org. Niektórym użytkownikom już udało się zauważyć naprawdę niezwykłe obiekty! Ponieważ kilka osób prosiło o dodatkowe wyjaśnienia dotyczące wyglądu tranzytów, w tym poście postaram się rozwiać Wasze wątpliwości.

Zdjęcie powyżej przedstawia krzywą blasku gwiazdy zbliżonej rozmiarem do naszego Słońca. Na wykresie dokonaliśmy symulacji efektów, które zostałyby wywołałane przez tranzyty różnych typów planet.

Białe kropki oznaczają ilość światła gwiazdy, jaką rejestruje teleskop Keplera, kiedy nie dochodzi do żadnych tranzytów. Niebieskie kropki pokazują, jak wyglądałby wykres w przypadku tranzytu planety wielkości Jowisza. Ta konkretna planeta, o wielkości ok. 11,2 razy większej od Ziemi i ok. 10 razy mniejszej od gwiazdy, pokazana jest (z zachowaniem skali) w niebieskiej ramce po lewej.

Zielone kropki pokazują, jak wyglądałby na wykresie tranzyt planety wielkości Neptuna. Ponieważ planeta ta jest znacznie bardziej oddalona od gwiazdy niż Jowisz, miałaby mniejszą prędkość orbitalną, a co za tym idzie, okrążenie przez nią gwiazdy trwałoby dłużej, stąd dłuższy czas – czyli większa szerokość – tranzytu na wykresie. Ponieważ Neptun jest o wiele mniejszy od Jowisza (jego promień jest 3,9 razy większy od promienia Ziemi), blokuje mniej światła, dlatego głębokość tranzytu jest mniejsza.

Oba te przypadki tranzytów są bardzo wyraźne w porównaniu do efektów, jakie miałby tranzyt planety wielkości Ziemi. Niewielki punkcik widoczny na tle gwiazdy w czerwonej ramce po prawej pokazuje, jak – w skali – wyglądałby tranzyt takiej planety. Teraz widzicie, jak trudnym zadaniem jest wykrywanie planet wielkości Ziemi! Jeśli okres orbitalny tej planety trwałby 1 rok, jak w przypadku naszej Ziemi, to spadek jasności gwiazdy podczas tranzytu wyglądałby mniej więcej tak, jak zbiór czerwonych punktów zaznaczony na wykresie. Ziemia położona jest o wiele bliżej gwiazdy, więc jej prędkość orbitalna jest o wiele większa, a długość tranzytu – o wiele krósza niż w przypadku Jowisza czy Neptuna. Ponieważ planeta wielkości Ziemi jest o wiele mniejsza od Jowisza i Neptuna, blokuje również o wiele mniej światła, tak że spadek jasności dostrzegany przez nas jest ledwie zauważalny.

Nie oczekujemy, że zauważąycie wszystkie te zdarzenia, więc nie martwcie się tym, że możecie je przegapić. Właśnie po to wprowadziliśmy do wykresów “fałszywe” planety. Są to symulacje, które pomagają nam określić skuteczność działania Planet Hunters, czyli prawdopodobieństwo wykrycia planet o różnych rozmiarach i różnych okresach orbitalnych.

Gwiazdy zmienne (przykłady)

Powody zmian jasności gwiazd można podzielić na dwie kategorie: (1) orbitujący towarzysze oraz (2) astrofizyka gwiazd.

(1) W teorii zmienność będąca efektem działania orbitujących towarzyszy (w tym gwiazd i planet) powinna cechować się regularnością szwajcarskiego zegarka. W praktyce mogą wystąpić pewnie odchylenia spowodowane zbytnim zbliżeniem się do siebie gwiazd w układzie podwójnym, jednoczesnym tranzytem kilku planet lub dodatkowymi szumami elektronicznymi bądź astrofizycznymi w tle.

(2) Zmiany jasności gwiazd wynikające z ich wewnętrznych procesów fizycznych (czyli astrofizyki gwiazd) mogą być spowodowane pulsacjami, plamami lub rozbłyskami. Rozbłyski to losowo pojawiające się skoki na krzywej blasku. Pulsacje (np. gwiazd typu RR Lyrae) mają charakter quasiokresowy: przez pewien czas mogą pojawiać się regularnie, a ich cykle są dość krótkie (zwykle trwają od kilku godzin do mniej więcej jednego dnia). Zdjęcie poniżej przedstawia dwie gwiazdy zmienne krótkookresowe, które można określić jako “zmienne” i “pulsujące”. Mogą to być krótkookresowe układy podwójne, co łatwo zweryfikować za pomocą kolejnych badań.

puls1 puls2

Efektem plam gwiazdowych są złożone wariacje. Kiedy gwiazda się obraca, plamy na zmianę pojawiają się i znikają z pola widzenia w okresach od 1-2 dni (w przypadku najszybciej obracających się gwiazd) do kilku dni w przypadku wolniej obracających się gwiazd (okres obrotu Słońca wynosi 25 dni). Plamy mogą powstawać na różnych szerokościach geograficznych gwiazdy. Ponieważ niektóre szerokości geograficzne obracają się szybciej, a inne wolniej, pomiędzy cyklami poszczególnych plam mogą występować znaczne różnice. Krzywe blasku przedstawione poniżej najlepiej sklasyfikować jako zmienne, nieregularne. Jednak wykres po lewej można by również określić jako zmienny i regularny. Mimo że amplituda krzywych ulega zmianie, czas pomiędzy poszczególnymi szczytami pozostaje taki sam.

irreg1

irreg2

Transiting Planets

The effects of 3 different types of transiting planets on a Kepler light curve. (Illustration: H. & M. Giguere)

Hi I’m Matt, a graduate student at Yale University and a member of the Science Team. We’re really impressed with the turnout so far on planethunters.org and users have already pointed out some really amazing objects! Quite a few people have asked for some clarification on what transits look like, so I’ll address that in this post.

In the figure above, we’ve taken a Kepler light curve from a star that’s about the same size as the Sun and have simulated what the effects would be if a few different types of planets were to transit.

The white dots show the amount of light from the star measured with Kepler with no planets transiting. The blue points show what we would see if a planet just like Jupiter orbiting this star were to transit. This Jupiter-size planet, at about 11.2 times the size of the Earth and one tenth the size of the star, is shown to scale transiting its parent star in the top left blue box.

The green dots show what a planet just like Neptune would look like transiting. Since it is much further away from the star than Jupiter, it would have a slower orbital speed so it would take longer to transit the disk of its parent star, which is what explains the longer duration, or wider width, of the transit event. With Neptune’s much smaller size than Jupiter, at 3.9 times the radius of the Earth, it doesn’t block out as much light, which is why the depth is much shallower.

Both of these events are very noticeable, compared to the effects of an Earth-size planet. The tiny speck on the star in the far right red box shows, to scale, what a transiting Earth-size planet would look like if we could see it. Now you get an idea of how difficult finding Earth-size planets is going to be! If that transiting planet had an orbital period of 1 year just like the Earth, then the dip in light observed from the parent star as the planet transits would be similar to the red points in the light curve. Since the Earth is much closer to the star, it has a much faster orbital speed, which then makes the duration of transit much shorter than the duration of either Jupiter or Neptune. Because the Earth-size planet is much smaller than either Jupiter or Neptune, it also blocks out less light making the dip in light we receive here on Earth barely discernible from no transit at all.

We don’t expect people to see these events all the time, so don’t worry about missing them. That’s why we’ve introduced fake planets into the mix. The fake, or synthetic, planets will help us determine the completeness of Planet Hunters, or how likely we are to detect planets of different sizes and with different orbital periods if they exist.