Uncertainty

Hello, I’m John, a graduate student at Yale University and a member of the Science Team. We have had some questions about the non-light curve information on the star pages, including: how accurate is the data, and why is it missing occasionally? This post will give you some background on where this data comes from and how to interpret it.

Before the Kepler spacecraft was launched, a lot of thought went into finding the optimal patch of sky to observe. Then, many years were spent collecting as much data as possible, from the ground, about the stars in that patch of sky. Photometry (a measure of star brightness, like you have been looking at on planethunters.org) was taken through multiple filters of most stars and spectra (with more detailed information) were taken of the brightest stars. These measurements all went into selecting the most promising stars for the Kepler mission to look at.

From these measurements, it is possible to calculate certain values which are useful in interpreting the data from Kepler. This includes spectral type, effective temperature, surface gravity, and radius. All of these values were compiled into the Kepler Input Catalog, which we use to show you the information on the star pages. However, because this data was taken en-masse and many of the stars are quite dim there is sometimes a large uncertainty in these parameters or there may be no derived values at all. When you look at the stellar radius on a star page, that number could be off by as much as 50%!

After interesting stars are found, much effort goes into closely examining the star with larger telescopes, more frequent observations with Kepler, or both. This results in much more accurate determinations of all parameters. One recent paper (Metcalfe et al. 2010) determined the radius and age of a Kepler star to within 1%.

Some of you have already been calculating the size of the transiting companion using the duration of the transit and the stellar radius. It has been great to see the phenomenal work people are doing in seeking to understand these stars. Keep in mind though that until more accurate follow up data can be taken, there will be a large amount of uncertainty in those numbers.

Advertisements

About The Zooniverse

Online citizen science projects. The Zooniverse is doing real science online,.

2 responses to “Uncertainty”

  1. Derek N says :

    Thanks for the information, John!

    In general, can we expect any changes to this data after February? Actually, a break down of exactly how the data set will be augmented after February would be great. Will it be the same set of stars, just with a longer timeline?

  2. Constantine Thomas (EDG) says :

    You might want to link to a copy of the paper that people can access for free, rather than being charged exorbitant amounts of money by the publishers 😉 : http://arxiv.org/abs/1010.4329

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: